Retinoid Signaling and Neurogenin2 Function Are Coupled for the Specification of Spinal Motor Neurons through a Chromatin Modifier CBP
نویسندگان
چکیده
Extracellular signals and cell-intrinsic transcription factors cooperatively instruct generation of diverse neurons. However, little is known about how neural progenitors integrate both cues and orchestrate chromatin changes for neuronal specification. Here, we report that extrinsic signal retinoic acid (RA) and intrinsic transcription factor Neurogenin2 (Ngn2) collaboratively trigger transcriptionally active chromatin in spinal motor neuron genes during development. Retinoic acid receptor (RAR) binds Ngn2 and is thereby recruited to motor neuron genes targeted by Ngn2. RA then facilitates the recruitment of a histone acetyltransferase CBP to the Ngn2/RAR-complex, markedly inducing histone H3/H4-acetylation. Correspondingly, timely inactivation of CBP and its paralog p300 results in profound defects in motor neuron specification and motor axonal projection, accompanied by significantly reduced histone H3-acetylation of the motor neuron enhancer. Our study uncovers the mechanism by which extrinsic RA-signal and intrinsic transcription factor Ngn2 cooperate for cell fate specification through their synergistic activity to trigger transcriptionally active chromatin.
منابع مشابه
Retinoid Receptor Signaling in Postmitotic Motor Neurons Regulates Rostrocaudal Positional Identity and Axonal Projection Pattern
The identity of motor neurons diverges markedly at different rostrocaudal levels of the spinal cord, but the signals that specify their fate remain poorly defined. We show that retinoid receptor activation in newly generated spinal motor neurons has a crucial role in specifying motor neuron columnar subtypes. Blockade of retinoid receptor signaling in brachial motor neurons inhibits lateral mot...
متن کاملA Requirement for Retinoic Acid-Mediated Transcriptional Activation in Ventral Neural Patterning and Motor Neuron Specification
The specification of neuronal fates in the ventral spinal cord depends on the regulation of homeodomain (HD) and basic-helix-loop-helix (bHLH) proteins by Sonic hedgehog (Shh). Most of these transcription factors function as repressors, leaving unresolved the link between inductive signaling pathways and transcriptional activators involved in ventral neuronal specification. We show here that re...
متن کاملTransmembrane protein GDE2 induces motor neuron differentiation in vivo.
During neural development, coordinate regulation of cell-cycle exit and differentiation is essential for cell-fate specification, cell survival, and proper wiring of neuronal circuits. However, the molecules that direct these events remain poorly defined. In the developing spinal cord, the differentiation of motor neuron progenitors into postmitotic motor neurons is regulated by retinoid signal...
متن کاملFARP1 Promotes the Dendritic Growth of Spinal Motor Neuron Subtypes through Transmembrane Semaphorin6A and PlexinA4 Signaling
The dendritic morphology of neurons dictates their abilities to process and transmit information; however, the signaling pathways that regulate dendritic growth and complexity are poorly understood. Here, we show that retinoids induce the expression of the FERM Rho-GEF protein FARP1 in the developing spinal cord. FARP1 is expressed in subsets of motor neurons and is enriched in dendrites of lat...
متن کاملDivergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles
The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 62 شماره
صفحات -
تاریخ انتشار 2009